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We study the effects of generalized surface disorder on the monomer-monomer model of heterogeneous
catalysis, where disorder is implemented by allowing different adsorption rates for each lattice site. By map-
ping the system in the reaction-controlled limit onto a kinetic Ising model, we derive the rate equations for the
one- and two-spin correlation functions. There is good agreement between these equations and numerical
simulations. We then study the inclusion of desorption of monomers from the substrate, first by both species
and then by just one, and find exact time-dependent solutions for the one-spin correlation functions.
@S1063-651X~96!01708-4#

PACS number~s!: 05.70.Ln, 82.65.Jv, 82.20.Mj

I. INTRODUCTION

Diffusionless surface-reaction models were first intro-
duced by Ziff, Gulari, and Barshad@1#, who investigated a
monomer-dimer reaction corresponding to the chemical re-
action 2CO1O2→2CO2 on a catalytic surface. A well-
studied variant @2–4# employs the simpler monomer-
monomer reaction, described by

Agas1S→
kA
Asurface,

Bgas1S→
kB
Bsurface,

Asurface1Bsurface→
kR
ABgas12S, ~1!

whereS denotes an empty site. This process exhibits aki-
netic phasewhen there are equal propensities ofA and B
species, in which the long-time kinetics become dominated
by domain coarsening. Mean-field analysis@5#, in which ev-
ery site is taken to be connected to every other site in a
‘‘complete graph,’’ demonstrated that finite lattices will al-
ways saturate—that is, the lattice will either become full of
A’s, or full of B’s, and the process will stop. Krapivsky@6#
recently solved the model exactly in the reaction-controlled
limit kR→` by mapping the system onto the standard Ising
model.

Many enhancements to these models have been studied
with a view to more closely modeling actual chemical pro-
cesses, including nearest-neighbor excluded adsorption@7#
and surface diffusion@4,8#. However, only recently have the
effects of surface disorder been touched upon by Frache-
bourget al. @9#. They chose to model a disordered surface by
taking a lattice of two different types of site, one that favors

adsorption by theA species and one which favors adsorption
by theB’s. They showed numerically that such disorder al-
lows for a reactive equilibrium in two dimensions.

In this paper, we extend the analytical method used in@6#
to a general form of surface disorder, based on@9# but allow-
ing for a range of different types of site in the lattice. Fur-
thermore, we also investigate separately the effects of de-
sorption in the system. All the results presented are for the
physically relevant case of two dimensions.

This paper is organized as follows. In Sec. II we define
the model and derive the general rate equations for the
n-spin correlation functions. In Sec. III, these equations are
applied to a model similar to that in@9# and their solutions
are compared to numerical simulations. In Secs. IV and V we
include the effects of desorption, first by both species and
then by just one, and derive exact solutions. The conclusions
are summarized in Sec. VI.

II. RATE EQUATIONS

We consider the surface reactionA1B→2S on a periodic
L3L square lattice, ignoring the effects of diffusion and
desorption. For simplicity, we take the reaction-controlled
limit, where the adsorption ofA andB species is taken to be
infinitely fast so that the substrate is always full. The algo-
rithm employed here is to select a nearest-neighbor~NN!
pair at random, check for anAB reaction, and, if so, remove
the particles and immediately refill both sites.

With the usual homogeneous model, the probability of
filling a site with an A or B is independent of the site
chosen—in this model, however, that probability is allowed
to vary. Specifically, we introduce thesite inhomogeneity
matrix Pi j , 0<Pi j<1 ;i , j , such that the probability of fill-
ing the site (i , j ) with anA is given byPi j ~or, equivalently,
a probability 12Pi j of filling the site with aB!.

Since in the reaction-controlled limit each site (i , j ) has
only two possible states, we can map this model onto an
Ising model with mixed Glauber-Kawasaki dynamics@6#,
identifying A’s with Si j511 and B’s with Si j521. The
master equation forP(S,t), the probability distribution for
the system to be in the stateS5$Si j % at time t, is*Electronic address: David.Head@brunel.ac.uk
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d

dt
P~S,t !5(

i , j
@Ui j ~Fi j S!P~Fi j S,t !2Ui j ~S!P~S,t !#

1(
i , j

@Vi j ~Fi j Fi11 jS!P~Fi j Fi11 jS,t !

2Vi j ~S!P~S,t !#

1(
i , j

@Wij ~Fi j Fi j11S!P~Fi j Fi j11S,t !

2Wij ~S!P~S,t !#. ~2!

The flip operatorFi j acts on the system-state vectorS by
flipping the sign of theSi j component, leaving the remaining
components unchanged.Ui j corresponds to Glauber spin-flip
dynamics@10#, whereasVi j andWij correspond to Kawasaki
exchange dynamics. Equation~2! is identical to the homoge-
neous case, except that now the full expressions forUi j , Vi j ,
andWij are given by

4t1Ui j5~12Si jSi11 j !$12di j1Si j ~12ai j
1!%

1~12Si jSi21 j !$12di21 j1Si j ~12ai21 j
1 !%

1~12Si jSi j11!$12ei j1Si j ~12bi j
1!%

1~12Si jSi j21!$12ei j211Si j ~12bi j21
1 !%,

~3!

4t2Vi j5~12Si jSi11 j !$di j1ai j
2Si j %, ~4!

4t2Wij5~12Si jSi j11!$ei j1bi j
2Si j %, ~5!

where the constant coefficientsa i j
6, b i j

6, di j , andei j are re-
lated to the inhomogeneity matrixPi j ,

ai j
65Pi11 j6Pi j ,

bi j
65Pi j116Pi j ,

di j5Pi j1Pi11 j22Pi j Pi11 j ,

ei j5Pi j1Pi j1122Pi j Pi j11 . ~6!

We proceed by deriving the rate equations for the one-
and two-spin correlation functions, where the generaln-spin
function is given by

^Si1 j 1,...,Sinj n&5(
S

Si1 j 1,...,Sinj nP~S,t !. ~7!

Using this and~2!, some lengthy but straightforward cal-
culations result in the following hierarchy of differential
equations, using the renormalized time scalet defined by
t215t1

211t2
21, and settingt15t2:

4t
d

dt
^Si j &5D i j ^Si j &1~122Pi j !^Si j $D i j Si j %&, ~8!

4t
d

dt
^Si jSkl&5~D i j1Dkl!^Si jSkl&1~122Pi j !

3^Si jSkl$D i j Si j %&1~122Pkl!

3^Si jSkl$DklSkl%&

for u i2ku1u j2 l u.1. ~9!

Here, D i j ^Si j &524^Si j &1^Si11 j&1^Si21 j&1^Si j11&
1^Si j21& is the discrete Laplacian. Foru i2ku1u j2 l u51,
i.e., for nearest-neighbor two-point correlations, the rate
equation has a more complex form. For example,

4t
d

dt
^Si jSi11 j&5~2di j28!^Si jSi11 j&1^Si21 jSi11 j&

1^Si jSi12 j&1^Si jSi11 j11&

1^Si jSi11 j21&1^Si j21Si11 j&

1^Si j11Si11 j&1~122Pi j !

3$^Si21 jSi j Si11 j&2 3
2 ^Si11 j&%

1~122Pi11 j !$^Si jSi11 jSi12 j&

2 3
2 ^Si j &%12~12di j !. ~10!

In the homogeneous limitPi j→1
2, the results in@6# are

recovered.

III. TWO-SITE DISORDER

We now turn to the case wherePi j can take just two
different values,p or q512p, with an equal number ofp
sites andq sites. This corresponds to the model given in@9#
with equal fluxes of A and B species, e5up21

2u and
c25c15 1

2 , using the notation given there.
Sincep1q51, the global dynamics of the system must

be unchanged under the transformation (p,q)→(12p,12q)
5(q,p). This symmetry means that the system cannot favor
one state over the other, and so the average of^Si j & taken
over the entireL3L lattice, (1/L2)( i , j^Si j &, will always tend
to zero in theL→` limit. An important consequence of this
is that if a finite system always saturates, then it does so with
equal probability of saturating either to every site being11,
or every site being21, and sô Si j &u t5`50 ;i , j , regardless
of whateverPi j may be. If a reactive steady state occurs—
that is, if the average saturation time diverges at least as fast
as eL

2
@5#—then it should be expected that^Si j & may be

nonzero fort→` ~if pÞ 1
2!. It is the purpose of this section to

apply the rate equations derived in Sec. II to predict the
equilibrium value of^Si j & on p sites in any such nontrivial
steady state.

Although the concentrations ofp sites andq sites are
equal, different arrangements of the sites can dramatically
alter the long-time dynamics of the system. For instance,
choosing to split the lattice into two alternatingc~232! sub-
lattices, with one sublattice full ofp sites and the other full
of q sites, results in a system with no nontrivial steady states
for pÞ0 or 1. Since saturation always occurs,^Si j & t5`50 on
either type of site.

A more informative model can be constructed by ran-
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domly arranging thep andq sites. This allows for regions of
p sites, which will all tend to be fixed into the same state,
and regions ofq sites, which will all tend to be fixed into the
other state, to ‘‘pin’’ the dynamics into a reactive equilib-
rium.

When p5q5 1
2 , we simply have the original homoge-

neous model with its associated kinetic phase—the distinc-
tion between the two sorts of site is lost. Forp50 or 1, the
kinetics become entirely trivial, the only randomness coming
from the choice of which sites are to be checked for reaction,
and afterO(L2) reactions the system reaches a steady state
in which boundaries between regions ofp and q sites are
constantly reacting, but never moving.

More interesting, however, are the dynamics forpÞ0, 1
2,

or 1, when the system approaches a reactive steady state
exponentially in time. A useful mean-field theory can be
constructed by assuming that every site is surrounded by
exactly two p sites and twoq sites. It is then possible to
write down ~8! and ~10! for the two sorts of site,̂Si j &p and
^Si j &q , and the various two-point functions. To obtain a
closed set of equations, however, further approximations
must be made to reduce the three-point functions in~10! to
one- and two-point functions. The obvious choice is

^Si jSklSmn&'^Si jSkl&^SklSmn&, ~11!

but this is no longer asymmetric underSkl→2Skl , which
would result in^Si j &p1^Si j &qÞ0, something which cannot
be true sincep1q51. To restore the required symmetry we
must also include, where appropriate, the alternative three-
point approximation,

^Si jSklSmn&'^Si j &^SklSmn&. ~12!

For greater clarity, we denote the one-spin correlation
function ^Si j &p52^Si j &q by yp , the two-spin correlation
function between two NNp sites~or, equivalently, two NN
q sites! by zpp , and usezpq for the two-point function be-
tween nearest-neighborp andq sites. Settingt51, we can
now obtain a closed set of equations,

2
d

dt
yp522yp1~122p!~zpq1zpp22!, ~13!

4
d

dt
zpp5~4pq28!zpp23~122p!yp1$~122p!yp13zpp%

3~zpp1zpq!1~224pq!, ~14!

4
d

dt
zpq54pq2~4pq16!zpq13~122p!yp

13zpq~zpp1zpq!. ~15!

The most constructive way to test the validity of this
analysis is to compare the value ofyp at equilibrium, as
predicted by~13!–~15!, to numerical simulations. We iter-
ated the equations using a computer algebra package, with
the initial conditionsypu t505zppu t505zpqu t5050, until a
steady state became evident. For the simulation runs, we
used the corresponding initial conditions of a lattice ran-
domly filled with11’s or21’s. Again, the simulations were

continued until an equilibrium state was apparent. The two
different sets of values forypu t5` are compared in Fig. 1,
where the simulation results compare favorably with the ap-
proximate analysis, the agreement improving for larger val-
ues ofp. Note that even whenp50 or 1, yp still doesnot
tend to61, either in theory or in the numerical work. This is
because the system will now include configurations of
jammed sites. For instance, in the case ofp51, a q site
surrounded by fourp sites may initially start at11 but be
unable to change, since if all four NNp sites get fixed into a
11 state before they have reacted with the centralq site,
then theq site will never be able to react and so it will stay
at 11 for all time, despite the fact that it hasPi j50.

The discrepancy forp'1
2 can be explained by considering

when the approximations employed are valid. The reduction
of three-point functions to one- and two-point functions
given in ~11! and ~12! will fail when there exist large do-
mains of sites in the same state. To see why this is the case,
consider a group of three adjacent sites. Each site is in either
a11 state or a21 state, so we can, for instance, use~111!
to denote the case when all three sites are in the11 state,
and so on, for the other seven possible combinations. Now,
when p50 or 1, the state of each site will be fixed by
whether it is ap site or aq site, and, if we ignore jamming
effects, the site will be independent of its neighbors. Thus,
taken over the entire lattice, each of the eight possible con-
figurations, ~111!, ~112!, ~121!, . . . , ~222!, have
equal weightings. A brief analysis shows that the approxima-
tions are now in fact exact. However, within domains of
similar states, there will only be two equiprobable configu-
rations, ~111! and ~222!, and the approximations now
fail. Since domain coarsening is associated withp' 1

2, we
should expect the mean-field theory to break down here.
Note that, as can be seen from Fig. 1, the theory does man-
age to predict the exact answer forp5 1

2. This is due to noth-

FIG. 1. Plot ofp vs ypu t5` . The line gives the values predicted
by the rate equations. Numerical simulation results are plotted as
crosses. The simulations were performed on a 2003200 lattice, and
averaged over 100 runs.
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ing more than~13! decoupling from the other rate equations,
giving rise to the trivial solutionyp(t)[0.

The analysis in this section can be easily extended to
other inhomogeneity matrices. For instance, it is possible to
construct a mean-field theory for the case of the alternating
c~232! sublattices. For small times the theory agrees well
with experiment, but once saturation effects start to occur the
approximations again break down and fail to predict the cor-
rect answer ofyp→0.

IV. INHOMOGENEOUS DESORPTION

We now turn to an enhanced model studied by Fichthorn,
Gulari, and Ziff@11#, which introduces noise into the system
in the form of the desorption ofA andB species from the
substrate. They demonstrated numerically, later confirmed
by mean-field analysis@12#, that even a small desorption rate
induces steady-state reactivity onto finite lattices. In our ver-
sion of the model, sites vacated by desorption are refilled by
anA or aB as defined by the inhomogeneity matrix, which
we now callQi j . Qi j differs from Pi j in that now it only
applies to sites refilled after desorption—sites vacated after
an A1B→2S reaction have an equal chance of being re-
filled either by anA or by aB. Thus, the reaction kinetics
alone are the same as the usual homogeneous model, and the
Ui j , Vi j , andWij operators without the desorption take their
simpler form found by settingPi j5

1
2 in ~3!–~5!. Explicitly,

8t1Ui j ~S!542Si j ~Si11 j1Si21 j1Si j111Si j21!,
~16!

8t2Vi j ~S!512Si jSi11 j , ~17!

8t2Wij ~S!512Si jSi j11 . ~18!

To include inhomogeneous desorption within this formu-
lation, we replaceUi j with U i j

d ,

Ui j
d5Ui j1

1

2t3
$11Si j ~122Qi j !%, ~19!

where, as in@6#, we introduce a renormalized time scalet
and the spin-flip parameterg, defined by

1

t
5

1

t1
1

1

t2
1

1

t3
, ~20!

g512t/t3 . ~21!

The one-point spin-correlation rate equation can now be
recalculated using~2! and ~16!–~19!,

4t
d

dt
^Si j &5gD i j ^Si j &24~12g!$^Si j &1~122Qi j !%.

~22!

This can be solved by using a generating function,
G(X,Y,t), defined in terms of the time-dependent one-spin
correlation function̂ Si j &,

G~X,Y,t !5 (
i52`

`

(
j52`

`

XiYj^Si j &. ~23!

Combining this with~22! gives rise to a differential equa-
tion for G,

]G

]t
5
G

t H g

4 SX1
1

X
1Y1

1

YD21J
2

1

t3
(

i , j52`

`

XiYj~122Qi j !. ~24!

Noting that, except forG(X,Y,t), the right-hand side of
~24! is independent of time, it is not difficult to derive an
explicitly time-dependent expression for^Si j & in terms of its
initial state,s i j5^Si j &u t50,

^Si j &5e2t/t (
k,l52`

`

sklI i2kS gt

2t D I j2 l S gt

2t D
2

1

t3
(

k,l52`

`

~122Qkl!E
0

t

e2t8/tI i2kS gt8

2t D
3I j2 l S gt8

2t Ddt8, ~25!

whereI i(t) is the i th-order modified Bessel function. In the
special caseD i j Qi j50, it is possible to to rewrite the second
term on the right-hand side of~25! as

2
1

4t3
(

k,l52`

`

~122Qkl!$ f i2k11 j2 l1 f i2k21 j2 l

1 f i2k j2 l111 f i2k j2 l21%, ~26!

where for clarity we have introduced

f i j ~ t !5E
0

t

e2t8/tI i S gt8

2t D I j S gt8

2t Ddt8, ~27!

which obeys the identity

f i11 j1 f i21 j1 f i j111 f i j21

5
4

g
f i j2

4t

g
d i0d j01

4t

g
e2t/tI i S gt

2t D I j S gt

2t D , ~28!

with di j the usual Kro¨necker delta. Substituting~28! into ~25!
and ~26! results in an exact expression,

^Si j &52Qi j211e2t/t (
k,l52`

`

~122Qkl1skl!

3I i2kS gt

2t D I j2 l S gt

2t D . ~29!

So when D i j Qi j50, ^Si j &→2Qi j21 exponentially as
t→`, again in agreement with the homogeneous result of
@11#. With desorption, jamming is no longer possible and so
now ^Si j &→1 whenQi j51. Although this final solution is
exact, it is hard to see what physical applications a mixed
homogeneous and/or inhomogeneous model such as this one
may have.

1104 54D. A. HEAD AND G. J. RODGERS



V. INHOMOGENEOUS ONE-SPECIES DESORPTION

While investigating the monomer-dimer model, Ziff, Gu-
lari, and Barshad@1# briefly discussed the additional feature
of allowing just the monomers to desorb. Physically, this
corresponds to the reaction 2CO1O2→2CO2 where only the
CO can desorb from the substrate, which is a good approxi-
mation for this reaction at the usual operating temperatures.

To apply a similar principle to our monomer-monomer
model, we extend the analysis in Sec. IV to allow for the
desorption ofA species only, with the inhomogeneity matrix
Qi j only applying to sites vacated after desorption. Thus, the
flip-exchange operators are unchanged from~16!–~18!, but
now we replaceUi j with

Ui j
d5Ui j1

12Qi j

2t3
~11Si j !. ~30!

Furthermore,Qi j is also taken to be a constant matrix,
Qi j5q ;i , j . The rate equation for the one-spin correlation
function ~22! is now

4t
d

dt
^Si j &5D i j ^Si j &2g~12q!~11^Si j &!. ~31!

The definitions oft andg have now altered from the previ-
ous case,

1

t
5

1

t1
1

1

t2
, ~32!

g5
4t

t3
. ~33!

Applying the same generating function~23! results in a new
partial differential equation forG(X,Y,t) acting on anL3L
lattice,

]G

]t
5
G

t H 14 SX1
1

X
1Y1

1

YD21J 2
12q

t3
~G1L2!.

~34!

Continuing as before, an explicit time-dependent expression
for ^Si j & is reached,

^Si j &5e2t@1/t1~12q!/t3# (
k,l52L/2

L/2

sklI i2kS t

2t D I j2 l S t

2t D
2

~12q!L2

t3
E
0

t

expF2t8S 1t 1
12q

t3
D G

3I i S t82t D I j S t82t Ddt8. ~35!

VI. CONCLUSIONS AND DISCUSSION

We have introduced a methodology for dealing with the
effects of generalized surface disorder on the monomer-
monomer reaction processA1B→2S by mapping the sys-
tem in the reaction-controlled limit onto an Ising model. The
two-dimensional rate equations were derived, including the
very concise one-spin correlation equation~8!, and used to
study the special case of two-site disorder. Here, it was found
that the global system dynamics are sensitive to the choice of
layout of the two different types of site. Catalysts consisting
of two different molecules arranged in a regular manner,
such as on two alternatingc~232! sublattices, allow for no
reactive equilibrium and will always saturate on finite lat-
tices. Choosing to randomly arrange the sites, however, al-
lowing compact clusters of the same site, was shown to pro-
duce a reactive steady state. Analysis based on the rate
equations was used to predict the concentration ofA’s and
B’s on the different types of site, showing reasonable agree-
ment between theory and simulation despite the rather crude
approximations involved in the analysis. The model was
then extended to include desorption from the substrate, either
by one or both species, and was solved exactly in both cases.

Extending this work to dimensions other thand52 is
straightforward once the mapping onto the Ising model has
been achieved. Indeed, the rate equations ford51 can be
immediately seen from those given here~8!–~10!. We have
focused ond52 since the most useful physical application is
of surface catalysis.

It should be noted that the definition of inhomogeneity we
chose to employ here is only one of many ways of modeling
surface disorder. For instance, requiring that each site be
‘‘hit’’ a different number of times before adsorbing a par-
ticle, or assigning a quenched random ‘‘energy’’ to each site
and always adsorbing the particles onto the vacant site with
the lowest energy, are just two alternative possibilities. We
intend to study some of these in future work.
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